ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Lee C. Cadwallader, Cory S. Miller, Kathryn A. McCarthy
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 599-603
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963679
Articles are hosted by Taylor and Francis Online.
This paper discusses the possible forms of injury to maintenance personnel that could arise from a cryostat air ingress event. The results of a thermal-hydraulic analysis of several cryostat breach sizes show the time scales for possible injury and the severity of air pressure transients in the rooms near the cryostat. Energy sources were reviewed to identify worker safety concerns in a cryostat vacuum breach event. The room air pressure drop in medium and large breaches is the most important worker safety concern. Standard vacuum safety techniques are reducing time in proximity, maintaining an exclusion area, and employing some form of barrier or shielding between workers and vacuum reservoirs. Other suggested safety techniques discussed here are engineering controls (doors that can be easily opened under differential pressure), and administrative controls (buddy system, evacuation plan). These techniques are easy to implement in early design stages.