ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Robert D. Woolley
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 543-547
Plasma Engineering (Poster Session) | doi.org/10.13182/FST98-A11963669
Articles are hosted by Taylor and Francis Online.
Long pulse fusion physics experiments can be performed economically via resistive electromagnets designed for thermally steady-state operation. Possible fusion experiments using resistive electromagnets include long pulse ignition with DT fuel.1,2,3,4 Long pulse resistive electromagnets are alternatives to today's delicate and costly superconductors.5 At any rate, superconducting technology is now evolving independent of fusion, so near-term superconducting experience may not ultimately be useful.
High magnetic field copper coils can be operated for long pulses if actively cooled by subcooled liquid nitrogen, thermally designed for steady state operation. (Optimum cooling parameters are characterized herein.) This cooling scheme uses the thermal mass of an external liquid nitrogen reservoir to absorb the long pulse resistive magnet heating. Pulse length is thus independent of device size and is easily extended. This scheme is most effective if the conductor material is OFHC copper, whose resistivity at liquid nitrogen temperature is small. Active LN2 cooling also allows slow TF ramp-up and avoids high resistance during current flattop; these factors reduce power system cost relative to short pulse adiabatic designs.