ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Robert D. Woolley
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 543-547
Plasma Engineering (Poster Session) | doi.org/10.13182/FST98-A11963669
Articles are hosted by Taylor and Francis Online.
Long pulse fusion physics experiments can be performed economically via resistive electromagnets designed for thermally steady-state operation. Possible fusion experiments using resistive electromagnets include long pulse ignition with DT fuel.1,2,3,4 Long pulse resistive electromagnets are alternatives to today's delicate and costly superconductors.5 At any rate, superconducting technology is now evolving independent of fusion, so near-term superconducting experience may not ultimately be useful.
High magnetic field copper coils can be operated for long pulses if actively cooled by subcooled liquid nitrogen, thermally designed for steady state operation. (Optimum cooling parameters are characterized herein.) This cooling scheme uses the thermal mass of an external liquid nitrogen reservoir to absorb the long pulse resistive magnet heating. Pulse length is thus independent of device size and is easily extended. This scheme is most effective if the conductor material is OFHC copper, whose resistivity at liquid nitrogen temperature is small. Active LN2 cooling also allows slow TF ramp-up and avoids high resistance during current flattop; these factors reduce power system cost relative to short pulse adiabatic designs.