ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert D. Woolley
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 543-547
Plasma Engineering (Poster Session) | doi.org/10.13182/FST98-A11963669
Articles are hosted by Taylor and Francis Online.
Long pulse fusion physics experiments can be performed economically via resistive electromagnets designed for thermally steady-state operation. Possible fusion experiments using resistive electromagnets include long pulse ignition with DT fuel.1,2,3,4 Long pulse resistive electromagnets are alternatives to today's delicate and costly superconductors.5 At any rate, superconducting technology is now evolving independent of fusion, so near-term superconducting experience may not ultimately be useful.
High magnetic field copper coils can be operated for long pulses if actively cooled by subcooled liquid nitrogen, thermally designed for steady state operation. (Optimum cooling parameters are characterized herein.) This cooling scheme uses the thermal mass of an external liquid nitrogen reservoir to absorb the long pulse resistive magnet heating. Pulse length is thus independent of device size and is easily extended. This scheme is most effective if the conductor material is OFHC copper, whose resistivity at liquid nitrogen temperature is small. Active LN2 cooling also allows slow TF ramp-up and avoids high resistance during current flattop; these factors reduce power system cost relative to short pulse adiabatic designs.