ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
E.T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 489-495
Nonelectrical Applications | doi.org/10.13182/FST98-A11963660
Articles are hosted by Taylor and Francis Online.
The ST-VNS devices designed for testing and developing fusion power blanket may offer a unique opportunity for near-term, non-electric applications:
-A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.-A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.-The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.
A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.
A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.
The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.