ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Manfred Roedig, Reiner Duwe, Jochen Linke, Guenther Pott, Bernhard Wiechers
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 464-468
Plasma Facing Components Technology | doi.org/10.13182/FST98-A11963656
Articles are hosted by Taylor and Francis Online.
In order to study degradation effects of neutrons on plasma-facing materials and joints, actively-cooled beryllium and CFC samples were irradiated in the High Flux Reactor in Petten up to 0.35 dpa at 350 and 700°C. Later, these samples were tested by means of an electron beam facility under static and cyclic heating conditions. The heat removal efficiency and the thermal fatigue behavior of these samples were compared to those of corresponding non-irradiated samples. A significant increase of surface temperature was observed for all samples, due to a reduced thermal conductivity of the CFC materials after neutron irradiation. This effect is less distinctive for samples irradiated at the higher temperature. Long term fatigue tests with 1000 heating cycles at 15 MW/m2 did not create any failure of the plasma-facing material or the bond layer of the tested mock-ups. Similar experiments have been performed with brazed beryllium-copper mock-ups. Flat tile mock-ups with an S65 C armor on a CuCrZr heat sink were loaded up to 1000 cycles at a power density of 7 MW/m2 without detachment of tiles.