ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge, T. C. Jernigan, S. L. Milora, J-F Artaud, A. Géraud
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 419-424
Plasma Fueling, Heating, and Current Drive | doi.org/10.13182/FST98-A11963649
Articles are hosted by Taylor and Francis Online.
High-speed injection of pellets, composed of frozen hydrogen isotopes and multimillimeter in size, is commonly used for core fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Straight guide tubes have typically been used to transport/deliver pellets from the acceleration device to the outside, or magnetic low-field side, of the torus/plasma (distance of −5 to 10 m for most installations). Recently, alternative pellet injection schemes have been used in plasma fueling experiments, including inside launch from the magnetic high-field side on ASDEX-U and top launch (vertically downward) on Tore Supra and DIII-D. These schemes require the use of curved guide tubes in which the pellets are subjected to stresses from centrifugal and impact forces. Thus, with curved guide tubes the speed at which intact pellets can be delivered reliably to the plasma is limited. In impact experiments on flat plates, it was found that deuterium (D2) pellets can survive single collisions at normal velocities in the range 20 to 35 m/s. Several series of tests with various curved guide tube configurations have been carried out, showing that intact pellets can be reliably delivered at speeds of several hundreds of meters per second. The experimental data are summarized and discussed. Also, a model is under development at Tore Supra for predicting these phenomena, and preliminary comparisons with the data are discussed.