ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Mark D. Carter, Phillip M. Ryan, David W. Swain
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 407-411
Plasma Fueling, Heating, and Current Drive | doi.org/10.13182/FST98-A11963647
Articles are hosted by Taylor and Francis Online.
High harmonic fast waves (HHFW) have been chosen as the primary method to drive steady state currents in the National Spherical Torus Experiment (NSTX). The somewhat limited experience with this frequency range in conventional tokamak plasma indicates that the coupling to electrons should be successful; however, there is no experimental data base for HHFWs in the unique and rapidly varying plasma regimes expected for NSTX. In this paper, we describe how the HHFW antenna was designed for NSTX using the computer codes to help make decisions that might affect the system's performance and operation. The antenna geometry has been optimized to maintain the power handling and phase control requirements within engineering constraints. The physics issues that lead to the choice of poloidal current strap orientation are discussed. Expectations for current profile control using the antenna's phase control system are also discussed.