ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
A S Kaye, JET Team
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 308-316
Fusion Topical Opening Session | doi.org/10.13182/FST98-A11963633
Articles are hosted by Taylor and Francis Online.
During 1997, JET carried out a campaign of operation in deuterium/tritium. A total of 99 grams of tritium was admitted to the torus using gas puffing and neutral beam injection. With a site inventory of 20 grams of tritium, this required repeated re-processing of the gas recovered from the torus using the JET active gas handling plant. Around 220 tokamak pulses were carried out with tritium concentrations above 40%, during which a total of 2.5.1020 14 MeV neutrons were produced. Emphasis was placed on re-producing conditions close to those anticipated in the ITER experimental fusion reactor, in particular maintaining dimensionless parameters important in the physics of confinement. The experimental program included high fusion yield hot-ion and optimized shear scenarios in particular for the study of alpha particle physics. Achievements included a maximum fusion power of 16 MW in hot-ion H-mode at a Q of 0.6; first production of DT power (8 MW) in optimized shear; a Q of 0.2 for 5 seconds in an ITER relevant steady state ELMy H-mode at a fusion power of 4 MW; a Q of 0.22 in RF only discharges; and observation of alpha particle heating. Tritium was found to give a marked reduction in the H-mode threshold and an improvement in edge pedestal stability but no change in global confinement. The optimized shear scenario required re-optimization in tritium, only partially achieved. The results are generally consistent with ignition in ITER. Retention of tritium in the torus is much higher than anticipated and tritium recovery during the clean-up campaign was modest. The divertor tiles have since been replaced remotely with no personnel access to the torus. Tritium release and the dose to personnel have been well within the low approved levels.
JET has successfully completed this tritium campaign, producing both physics and technical data invaluable to the design of next step devices. The results in particular demonstrate the importance of operations in tritium in reliably predicting the performance of future machines.