ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jürgen Uhlenbusch
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 345-354
Diagnostics | doi.org/10.13182/FST98-A11947027
Articles are hosted by Taylor and Francis Online.
The objective of laser-aided edge diagnostics is closely connected with plasma wall interaction processes. Thus at first a short description of the plasma regions near first wall, limiter or divertor and the most important quantities and processes to be evaluated there is given. A very important technique to measure electron densities and temperatures in the edge is Thomson scattering. Collective scattering represents a useful method to quantify fluctuations of electron density and their relation to particle and energy transport. To detect neutral particles and ions after their release from the wall and during recycling phases laser induced fluorescence (LIF) is a well established technique. Future applications of laser diagnostics as two-photon scattering and coherent anti-Stokes Raman scattering (CARS) are discussed.
IV. SUMMARY AND CONCLUSION
The most important methods of laser aided edge diagnostics are introduced and a few results of measurements summarized. While Thomson scattering on tokamaks seems to be now a matter of routine with high reliability, LIF techniques still underly restrictions because nearly each atomic species requires its own laser system, often in the VUV. Nevertheless, some progress can be observed with respect to the bandwidth, timing range, wavelength, power, reproducibility, repetition rate etc. It is anticipated that excitation by two-photon absorption develops more and more to a sensitive technique as this is expected from four-wave mixing techniques.