ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Alexander A. Gaizer, Mohamed A. Abdou
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1005-1010
Fusion Blanket and Shield Technology | doi.org/10.13182/FST96-A11963068
Articles are hosted by Taylor and Francis Online.
Fully developed liquid-metal flow in a system of three straight rectangular ducts is investigated. The ducts are electrically coupled by common conducting walls covered with an imperfect insulating layer. A numerical model of magnetohydrodynamic (MHD) flow in the system is described. Since no additional assumptions, such as in the core-flow solution, have been made, this model can be used for the analysis of MHD flow in parallel ducts with nearly perfect insulating coating. Any orientation of the applied uniform magnetic field is possible. Electrical conductivities of the dividing and exterior walls, and of the insulating layers in individual channels can be varied independently, as well as characteristics of insulation imperfections in each channel. A restriction of equal pressure gradients in all ducts is imposed, and the flow partitioning between parallel channels is examined. Results of the numerical simulation of the influence of insulation imperfections on flow distribution and velocity profiles are presented.