ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
R.H. Jones, C.H. Henager, Jr., G.E. Youngblood, H.L. Heinisch
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 969-976
Fusion Materials | doi.org/10.13182/FST96-A11963062
Articles are hosted by Taylor and Francis Online.
Silicon carbide composites are attractive for structural applications in fusion energy systems because of their low activation and afterheat properties, excellent high-temperature properties, corrosion resistance and low density. Another attractive property includes the potential to engineer their properties by location within a component or system to meet variable performance requirements. This can be accomplished by tailoring the fiber type, volume fraction and architecture by location within the component. Also β SiC exhibits very low swelling (< 0.2%) over the temperature range of 800 to 1000°C.
These composites are relatively new materials with a limited data base; however, there is sufficient understanding of their performance to identify key issues in their application. These issues include: mechanical, chemical and radiation stability, nuclear transmutation, hermetic behavior, thermal conductivity, mechanical and thermal fatigue, thermal shock, joining and design methodology. Progress is being made on several of these issues in the U.S., European Union and Japanese fusion materials programs and through collaborations between these programs.