ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Arthur Nobile, Michael D. Keddy, Richard L. Hemphill
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 916-921
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963055
Articles are hosted by Taylor and Francis Online.
Capability to fill inertial confinement fusion (ICF) targets with DT has recently been established at the Weapons Engineering Tritium Facility (WETF) at Los Alamos National Laboratory (LANL). The target filling system provides DT-filled glass targets for the U.S. National ICF Program. Tritium storage, purification, mixing, analysis, and high pressure capabilities at WETF are used to provide DT at pressures up to 400 atm to a target filling cell that can operate at temperatures to 400 °C. Isotopically pure tritium is obtained from the Tritium Systems Test Assembly at LANL, and typically has purities of 99% tritium or better. At WETF, a palladium-silver diffuser is used for removal of decay 3He from tritium prior to mixing with deuterium. After preparation, DT mixtures are stored in a passivated volume to minimize impurity accumulation from stainless steel. Analysis of tritium and DT mixtures is performed with a quadrupole mass spectrometer/beta scintillation detector system that utilizes an analytical technique previously developed at LANL to provide hydrogen isotope, helium, and impurity analysis. Glass targets are filled in aluminum eggcrates. The target filling cell has been designed to contain two eggcrates while maintaining isothermal conditions across the eggcrates during diffusion filling of targets. Results from a cryogenic condensation technique performed at Lawrence Livermore National Laboratory have confirmed the fill pressures.