ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
P. W. Fisher, M. J. Gouge, B. J. Denny
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 845-849
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963043
Articles are hosted by Taylor and Francis Online.
As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter ~7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems.
In tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced–the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of “isotopic fueling” in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.