ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Russell W. Kincaid, Mohamed A. Bourham, John G. Gilligan
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 834-839
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963041
Articles are hosted by Taylor and Francis Online.
Modifications to the electrothermal plasma gun SIRENS (Surface Interaction Research Experiment at North Carolina State University) have been completed to allow for acceleration experiments using plastic pellets. The barrel is assembled from separate sections of 15 cm each, such that the acceleration path could be varied from 15 to 60 cm to study the effect of ablation and viscous drag, optimize the performance of the gun, and to provide longer acceleration paths for longer pulse lengths. A diagnostics system for velocity and position of the pellet is installed, which includes a four-branch break-wire measuring array situated at various locations along the acceleration path. A pulse forming network (PFN) was used to provide variable pulse lengths for the experimental shots. The longer pulse length allowed the pellet to accelerate for a longer period of time and thus reach higher exit velocities. Pressures of 100-600 MPa can be achieved, depending on the pulse duration and input energy to the source. Modifications have been implemented to the 1-D, time dependent code ODIN (One Dimensional INterior code) to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON (Pellets On SIRENS Experimental Device modeled One-D), compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking.