ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Satoshi Suzuki, Kazuyoshi Sato, Masanori Araki, Kazuyuki Nakamura, Masayuki Dairaku, Kenji Yokoyama, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 793-797
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963033
Articles are hosted by Taylor and Francis Online.
Since the thermal loads causes deformation of the divertor plate, it is one of the critical issues to develop support structures which can suppress the deformation within an allowable tolerance. Slide support structures and rigid support structures have been proposed for the ITER divertor plate design. Advantage of the fully rigid support structure is 1) the thermal deformation can almost fully be suppressed, 2) the fabrication process becomes simpler than the slide support structures. However, stresses/strains of the divertor plate with the rigid support structure are seemed to be much higher than those of the slide support structures. To evaluate the thermal fatigue behavior for the rigid support structure, the authors have developed a 1 m long divertor mock-up and have performed the thermal cycling experiments of the mock-up. The mock-up consists of 36 armor tiles, a soft copper (OFHC-Cu) heat sink, and an OFHC-Cu cooling tube. The armor tiles were made of a unidirectional Carbon Fiber Reinforced Carbon composite material which has high thermal conductivity perpendicular to the coolant flow direction. The saddle-shaped armor tiles were brazed onto the heat sink with a silver braze. The thermal cycling experiment was performed in an area of 25 × 50 mm2 at an incident heat flux of 25 MW/m2 for a pulse duration of 10 s. As a result, a water leakage from the cooling tube between the heated armor tiles occurred at 1247th thermal cycle. In the scanning electron microscope (SEM) observation, the striation which is typical for fatigue cracking was clearly observed at the fracture surface of the cooling tube. The 3-D finite element analysis for the simulation of the experiment was also performed, and the large strain amplitude was found at the heated side of the cooling tube. Therefore, the fatigue cracking of the cooling tube could mainly be attributable to this large strain amplitude. To realize the rigid support structure, more stiffness is required for the structural material of the cooling tube.