ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Toshihisa Hatano, Kazuyoshi Sato, Masayuki Dairaku, Toshimasa Kuroda, Masanori Araki, Hideyuki Takatsu, Satoshi Sato, Kiyoshi Fukaya, Toshimasa Kurasawa, Ikuhide Tokami, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 752-756
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963025
Articles are hosted by Taylor and Francis Online.
A shielding blanket design in a fusion reactor such as ITER (International Thermonuclear Experimental Reactor) has been proposed to be a modular structure integrated with the first wall. In terms of the fabrication, HIP (Hot Isostatic Pressing) method has been proposed for the joining of dispersion strengthened copper (DS-Cu) and type 316L stainless steel (SS316L) at FW. High heat flux tests of HIP bonded DS-Cu/SS316L first wall panel were performed at Particle Beam Engineering Facility in JAERI to investigate its thermo-mechanical performance. They consisted of four test campaigns. The former two campaigns simulated ITER normal operation conditions in terms of the temperature and strain at the HIP bonded interfaces between DS-Cu and SS316L, respectively. The latter two simulated disruption conditions. Under normal heat flux conditions, temperature responses of the first wall panel measured by the thermocouples agreed very well with those predicted by FEM analyses. On the other hand, ejection of a number of small particles from DS-Cu surface was observed during the last campaign with the high heat flux simulating disruptions.