ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
R. E. Tokheim, L. Seaman, T. Cooper, B. Lew, D. R. Curran, J. Sanchez, A. Anderson, M. Tobin
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 745-751
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963024
Articles are hosted by Taylor and Francis Online.
The purpose of this work is to computationally assess the threat from shrapnel generation on the National Ignition Facility (NIF) first wall, final optics, and ultimately other target chamber components. Shrapnel is defined as material that is in a solid, liquid, or clustered-vapor phase with sufficient velocity to become a threat to exposed surfaces as a consequence of its impact. Typical NIF experiments will be of two types, low neutron yield shots in which the capsule is not cryogenically cooled, and high yield shots for which cryogenic cooling of the capsule is required. For non-cryogenic shots, shrapnel would be produced by spalling, melting, and vaporizing of “shine shields” by absorption and shock wave loading following 1-ω and 2-ω laser radiation. For cryogenic shots, shrapnel would be generated through shock wave splitting, spalling, and droplet formation of the cryogenic tubes following neutron energy deposition. Motion of the shrapnel is determined not only by particle velocities resulting from the neutron deposition, but also by both x-ray and ionic debris loading arising from explosion of the hohlraum. Material responses of different target area components are computed from one-dimensional and two-dimensional stress wave propagation codes. Well developed rate-dependent spall computational models are used for stainless steel spall and splitting. Severe cell distortion is accounted for in shine-shield and hohlraum-loading computations. Resulting distributions of shrapnel particles are traced to the first wall and optics and damage is estimated for candidate materials. First wall and optical material damage from shrapnel includes crater formation and associated extended cracking.