ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ying T. Lee, Myron A. Hoffman, M. Hafez
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 669-673
Divertor Design and Experiments | doi.org/10.13182/FST96-A11963013
Articles are hosted by Taylor and Francis Online.
A subcooled nucleate boiling computer code (with 3D heat conduction in solid and 1D forced convection in fluid) that incorporates a good estimation of the single-phase and two-phase pressure drop was developed to evaluate a monoblock design of the divertor with smooth tubes as well as a wide variety of cooling designs. Using one of the monoblock divertor designs proposed by the European International Thermonuclear Experimental Reactor (ITER) team as of March 1995, it was found that under a normal steady state operating condition with a peak heat flux of about 5 MW/m2, the water flow remained in the single phase liquid regime. Under an abnormal operating condition with a peak heat flux of about 20 MW/m2, the partially developed boiling (PDB) regime occurred where the local critical heat flux safety factor, (SFCHF=CHF(z)/q“(0=0°)), was estimated to be about 1.4 using the Tong-75 CHF correlation. This indicates that further increases in the magnitude of the heat flux beyond 20 MW/m2 may raise safety concerns for the design. By increasing the mass flux, decreasing the inlet water temperature, or increasing the inlet water pressure, the CHF safety margin of the design can be increased without inserting twisted tapes inside cooling tubes.