ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
D. Post, T. Ando, A. Antipenkov, S. Chiocchio, J. Dietz, G. Federici, M. Gouge, Yu. Igitkhanov, G. Janeschitz, A. Kukushkin, P. Ladd, J. Mandrekas, E. Martin, D. Mitin, H. Nakamura, H. Pacher, W. Stacey, M. Sugihara, R. Tivey
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 594-600
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST96-A11963003
Articles are hosted by Taylor and Francis Online.
The ITER power and particle control system is designed to exhaust the 300 to 400 MW of alpha and auxiliary heating power and the 5 × 1020 He atoms per second created by the fusion reactions, to control the density and to fuel the plasma. The power and particle control system consists of a single null poloidal divertor, a set of active pumps with a total pumping speed of ~ 200 m3/s, and gas puffing and pellet fuelling systems. Atomic processes are used to spread out the heating power over the first wall and divertor walls, thereby reducing the peak heat loads on the divertor plates to acceptable levels. The divertor has a “vertical target” plate configuration and tight baffling to maximize the effectiveness of the atomic processes for energy losses in the divertor and to maximize the neutral pressure in the divertor and minimize the backflow of neutrals from the divertor to the main chamber.