ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. Post, T. Ando, A. Antipenkov, S. Chiocchio, J. Dietz, G. Federici, M. Gouge, Yu. Igitkhanov, G. Janeschitz, A. Kukushkin, P. Ladd, J. Mandrekas, E. Martin, D. Mitin, H. Nakamura, H. Pacher, W. Stacey, M. Sugihara, R. Tivey
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 594-600
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST96-A11963003
Articles are hosted by Taylor and Francis Online.
The ITER power and particle control system is designed to exhaust the 300 to 400 MW of alpha and auxiliary heating power and the 5 × 1020 He atoms per second created by the fusion reactions, to control the density and to fuel the plasma. The power and particle control system consists of a single null poloidal divertor, a set of active pumps with a total pumping speed of ~ 200 m3/s, and gas puffing and pellet fuelling systems. Atomic processes are used to spread out the heating power over the first wall and divertor walls, thereby reducing the peak heat loads on the divertor plates to acceptable levels. The divertor has a “vertical target” plate configuration and tight baffling to maximize the effectiveness of the atomic processes for energy losses in the divertor and to maximize the neutral pressure in the divertor and minimize the backflow of neutrals from the divertor to the main chamber.