ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Dennis J. Strickler, Steven P. Hirshman, Donald A. Spong, Michael J. Cole, James F. Lyon, Bradley E. Nelson, David E. Williamson, Andrew S. Ware
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 15-26
Technical Paper | doi.org/10.13182/FST04-A421
Articles are hosted by Taylor and Francis Online.
A compact quasi-poloidally symmetric stellarator (QPS) plasma and coil configuration is described that has desirable physics properties and engineering feasibility with a very low aspect ratio plasma bounded by good magnetic flux surfaces both in vacuum and at <> = 2%. The plasma is robust with respect to variations of pressure and the resulting bootstrap current, which leave the bounding flux surface approximately unchanged and thus reduce active positional control requirements. This configuration was developed by reconfiguring the QPS modular coils and applying a new computational method that maximizes the volume of good (integrable) vacuum flux surfaces as a measure of robustness. The stellarator plasma and coil design code STELLOPT is used to vary the coil geometry to determine the plasma geometry and profiles that optimize plasma performance with respect to neoclassical transport, infinite-n ballooning stability up to <> = 2%, and coil engineering parameters. The normal component of the vacuum magnetic field is simultaneously minimized at the full-beta plasma boundary.