ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G.J. Laughon, K.R. Schultz
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 471-474
National Ignition Facility | doi.org/10.13182/FST96-A11962985
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF), proposed by the Office of Inertial Confinement Fusion (ICF), will be used to demonstrate fusion ignition in a laboratory environment (1). The primary mission of NIF will be to support U.S. DOE Defense Programs. The facilities' secondary mission will be to support development of inertial fusion as a potential fusion energy source for civilian use (2). Target insertion is one of the technical issues which will need to be addressed before inertial fusion can become a practical energy source, and is one of the issues that can be investigated by experiments on the NIF.
Target insertion systems currently utilized at existing ICF facilities consist of mechanisms inside the target chamber to insert, position, and hold the target at the chamber center. These are not suitable for multiple shots in quick succession, as needed for energy applications. A study was performed to investigate various new techniques for target insertion in NIF.
Insertion concepts involving free-falling and artificially accelerated targets were developed and evaluated against a set of predetermined guidelines. Fixed structure holding systems were not considered due to the destructive environment at the chamber center. Conclusions drawn by the author suggest a system involving a fast retraction positioner would be suitable. A target would be positioned in a holder attached to a moveable arm. The holder is moved to a position slightly above the chamber center. The target is dropped and the holder/arm assembly is quickly retracted to avoid ablation effects. To improve target accuracy, a release system imparting near-zero torque and augmenting the target with additional mass to reduce drag effects would be employed. A plan illustrating a reasonable continuation of the project, leading ultimately to tests in NIF, is also presented.