ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Per F. Peterson, John M. Scott
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 442-447
National Ignition Facility | doi.org/10.13182/FST96-A11962980
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) target debris and ablated near-target materials pose the primary threat to the National Ignition Facility (NIF) final optics debris shields, as well as a major challenge in future inertial fusion energy (IFE) power plants. This work discusses a NIF “mini-chamber,” designed to mitigate the debris threat. Although the NIF base-line design protects against debris using a frost-protected target positioner and refractory first-wall coatings, the mini-chamber provides important flexibility in three areas: debris-shield protection from beyond-design basis shots (i.e. heavy hohlraums, special diagnostics, shields); fielding of large experiments with significant surface ablation; and studying key ablation and gas-dynamics issues for liquid-wall IFE power plants. Key mini-chamber modeling results are presented, followed by discussion of equipment requirements for fielding a NIF mini-chamber.