ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mitsuru Ohta
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 404-410
Fusion Technology | doi.org/10.13182/FST96-A11962975
Articles are hosted by Taylor and Francis Online.
The Japanese fusion program is based on the 3rd phase basic program of fusion research and development enacted in June 1992. The main objectives of the program are to achieve the self-ignition condition and to produce a long-burning plasma by constructing a fusion experimental reactor, which corresponds to ITER at present. In addition, the program aims at developing the basic fusion technology needed for constructing the prototype fusion reactor. Much effort is devoted to the ITER project to achieve the above-mentioned objectives.
Most of the technologies needed for constructing a fusion reactor will be developed during the engineering design activity, the construction, operation and shutdown of ITER. Fusion material usable under 100dpa, some safety issues, cost-saving technology and some other technologies will remain to be solved.
Next-step fusion research should be directed to the study how a commercial fusion reactor could become less expensive and environmentally safer, on the basis of plasma physics and technology established in the ITER project.