ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L.Y. Syu, George H. Miley, Yukihiro Tomita, Hiromu Momota
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 551-554
New Trends and Advanced Concepts | doi.org/10.13182/FST95-A11962961
Articles are hosted by Taylor and Francis Online.
Analytical studies on a traveling wave direct energy converter (TWDEC) for D-3He fueled fusion are carried. out. The energy of 15MeV carried by fusion protons is too high to handle with an electrostatic device. The TWDEC controls these high energy particles on the base of the principle of a Linac. This traveling wave method is discussed and the details of proton dynamics and excitation mechanism of electric power are clarified. The TWDEC consists of a modulator and a decelerator. The applied traveling wave potential to the modulator modulates the velocity of fusion proton beams. This modulation makes a form of bunched protons at a down stream of the modulator. The decelerator has a set of meshed grids, each of which are connected to a transmission circuit. The phase velocity of excited wave on the transmission circuit is controlled as same as that of decelerated protons. The kinetic energy 15MeV of proton beams changes into an oscillating electromagnetic energy on the transmission circuit. This highly efficient direct energy converter of fusion protons brings a fusion reactor with a high plant efficiency.