ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
V.E. Moiseenko
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 547-550
New Trends and Advanced Concepts | doi.org/10.13182/FST95-A11962960
Articles are hosted by Taylor and Francis Online.
D-T fusion in a DRACON with one hot (D or T) ion component is considered. It is supposed that the power from external source (neutral beam injection or ICRF heating) is deposited to hot ions near the center of DRACON mirror part. Because the energy deposition is anisotropic in the velocity space, the anisotropy of hot ions is substantial both for neutron source and reactor plasmas. This results in the following:–hot ions arc trapped mainly in the DRACON mirror part where good confinement can be expected. Therefore, the main channel of hot component energy loss is Coulomb collisions with the cold background plasma.–the pressure of hot ions substantially drops in the CRELs (stellarator parts of DRACON). The contribution of hot ions to Phirsh-Schluter current falls what facilitate the satisfaction of the beta-limit condition.–fusion output is localized in the DRACON mirror parts where confining magnetic field is not so high and more space for fusion energy utilizing devices is available. Reduced neutron flux in CRELs facilitates the solution of many technical problems there. In addition, localization of neutron flux leads to substantial reduction of external power required for the DRACON fusion neutron source.
hot ions arc trapped mainly in the DRACON mirror part where good confinement can be expected. Therefore, the main channel of hot component energy loss is Coulomb collisions with the cold background plasma.
the pressure of hot ions substantially drops in the CRELs (stellarator parts of DRACON). The contribution of hot ions to Phirsh-Schluter current falls what facilitate the satisfaction of the beta-limit condition.
fusion output is localized in the DRACON mirror parts where confining magnetic field is not so high and more space for fusion energy utilizing devices is available. Reduced neutron flux in CRELs facilitates the solution of many technical problems there. In addition, localization of neutron flux leads to substantial reduction of external power required for the DRACON fusion neutron source.
The scenarios for the DRACON neutron source as well as for the DRACON fusion reactor arc analyzed. The usage of hot ion distribution anisotropy effects, which arc strong for neutron source schemes and not so strong but sufficient for the fusion reactor one, results in that the scenarios have obvious advantages in comparison with analogous ones based on other confinement devices.