ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
V.E. Moiseenko
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 547-550
New Trends and Advanced Concepts | doi.org/10.13182/FST95-A11962960
Articles are hosted by Taylor and Francis Online.
D-T fusion in a DRACON with one hot (D or T) ion component is considered. It is supposed that the power from external source (neutral beam injection or ICRF heating) is deposited to hot ions near the center of DRACON mirror part. Because the energy deposition is anisotropic in the velocity space, the anisotropy of hot ions is substantial both for neutron source and reactor plasmas. This results in the following:–hot ions arc trapped mainly in the DRACON mirror part where good confinement can be expected. Therefore, the main channel of hot component energy loss is Coulomb collisions with the cold background plasma.–the pressure of hot ions substantially drops in the CRELs (stellarator parts of DRACON). The contribution of hot ions to Phirsh-Schluter current falls what facilitate the satisfaction of the beta-limit condition.–fusion output is localized in the DRACON mirror parts where confining magnetic field is not so high and more space for fusion energy utilizing devices is available. Reduced neutron flux in CRELs facilitates the solution of many technical problems there. In addition, localization of neutron flux leads to substantial reduction of external power required for the DRACON fusion neutron source.
hot ions arc trapped mainly in the DRACON mirror part where good confinement can be expected. Therefore, the main channel of hot component energy loss is Coulomb collisions with the cold background plasma.
the pressure of hot ions substantially drops in the CRELs (stellarator parts of DRACON). The contribution of hot ions to Phirsh-Schluter current falls what facilitate the satisfaction of the beta-limit condition.
fusion output is localized in the DRACON mirror parts where confining magnetic field is not so high and more space for fusion energy utilizing devices is available. Reduced neutron flux in CRELs facilitates the solution of many technical problems there. In addition, localization of neutron flux leads to substantial reduction of external power required for the DRACON fusion neutron source.
The scenarios for the DRACON neutron source as well as for the DRACON fusion reactor arc analyzed. The usage of hot ion distribution anisotropy effects, which arc strong for neutron source schemes and not so strong but sufficient for the fusion reactor one, results in that the scenarios have obvious advantages in comparison with analogous ones based on other confinement devices.