ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
S.C. McCool, A.J. Wootton, R.V. Bravenec, P.H. Edmonds, K.W. Gentle, H. Huang, J.W. Jagger, B. Richards, David W. Ross, E.R. Solano, J. Uglum, P.M. Valanju
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 444-450
Advanced Tokamak And Steady-State Sustainment Systems | doi.org/10.13182/FST95-A11947125
Articles are hosted by Taylor and Francis Online.
Recent favorable results on START have caused renewed interest in low aspect ratio tokamaks. To design an economical next-step spherical tokamak to study confinement scaling and high beta plasmas, we have developed a transport scaling and device optimization code. This code OPT, benchmarked against START, includes 10 empirical confinement scaling laws and essential tokamak physics such as stability limits. Parameters are optimized separately for each scaling law and physics goal. Using OPT we find for R/a=1.2 to 2.0 one can achieve βN=5 and <β>=30% with just two neutral beams (PNB<3.5 MW) for Ip≥0.75 MA, and Ro≥0.6 m. In contrast, if one insists on using the nominal device parameters, Ip=1 MA and Ro=0.8 m, with each scaling law, achieving βN=5 requires typically PNB⋍7.5 MW.