ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S.C. McCool, A.J. Wootton, R.V. Bravenec, P.H. Edmonds, K.W. Gentle, H. Huang, J.W. Jagger, B. Richards, David W. Ross, E.R. Solano, J. Uglum, P.M. Valanju
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 444-450
Advanced Tokamak And Steady-State Sustainment Systems | doi.org/10.13182/FST95-A11947125
Articles are hosted by Taylor and Francis Online.
Recent favorable results on START have caused renewed interest in low aspect ratio tokamaks. To design an economical next-step spherical tokamak to study confinement scaling and high beta plasmas, we have developed a transport scaling and device optimization code. This code OPT, benchmarked against START, includes 10 empirical confinement scaling laws and essential tokamak physics such as stability limits. Parameters are optimized separately for each scaling law and physics goal. Using OPT we find for R/a=1.2 to 2.0 one can achieve βN=5 and <β>=30% with just two neutral beams (PNB<3.5 MW) for Ip≥0.75 MA, and Ro≥0.6 m. In contrast, if one insists on using the nominal device parameters, Ip=1 MA and Ro=0.8 m, with each scaling law, achieving βN=5 requires typically PNB⋍7.5 MW.