ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Shoichi Ohi
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 349-352
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947103
Articles are hosted by Taylor and Francis Online.
Confinement times of particle and trapped magnetic flux in FRC plasmas were simulated using a one dimensional transport model and classical (Spitzer's) resistivity. Comparing the simulation results and experimental results indicated that a transport in the plasmas was basically classical and deviations of experimental results from classical values (so-called anomaly) might attribute to a plasma geometry effect, by which the deviation was larger for fat plasmas and smaller for prolate ones.
In order to verify this indication, a plasma electron heating with an axial injection of pulsed and intense ion beams was proposed for the plasmas in current FRC experiments. Possibility of this heating were examined by estimating an energy deposit rate of a beam ion in the plasmas. The energy deposit rate is a few%~about 100% for a plasma of 12cm in diameter and 80cm in length with a plasma parameter range of current experiments.