ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Shoichi Ohi
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 349-352
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947103
Articles are hosted by Taylor and Francis Online.
Confinement times of particle and trapped magnetic flux in FRC plasmas were simulated using a one dimensional transport model and classical (Spitzer's) resistivity. Comparing the simulation results and experimental results indicated that a transport in the plasmas was basically classical and deviations of experimental results from classical values (so-called anomaly) might attribute to a plasma geometry effect, by which the deviation was larger for fat plasmas and smaller for prolate ones.
In order to verify this indication, a plasma electron heating with an axial injection of pulsed and intense ion beams was proposed for the plasmas in current FRC experiments. Possibility of this heating were examined by estimating an energy deposit rate of a beam ion in the plasmas. The energy deposit rate is a few%~about 100% for a plasma of 12cm in diameter and 80cm in length with a plasma parameter range of current experiments.