ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Shigefumi Okada, Susumu Ueki, Haruhiko Himura, Seiichi Goto
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 341-344
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947101
Articles are hosted by Taylor and Francis Online.
Confinement magnetic field of a field-reversed-configuration (FRC) plasma is reduced by a factor of about 10 and plasma density is decreased by a factor of about 100 without lowering the temperature seriously by translating a theta-pinch produced FRC plasma axially into a large bore metal vessel. Reduced magnetic field brings the lower-hybrid frequency into a range easily detected by magnetic probes. Search for wave activities in the FRC plasma for a wide frequency range disclosed magnetic field fluctuations in the lower-hybrid-drift frequency range for the first time in the FRC plasma. The identification of the mode is not done yet but the fluctuation level is close to the values predicted by theories on the LHD instability. This fluctuation level is not large enough to account for the transport rate of the particles from the FRC plasma.