ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
A. Ejiri, S. Ohdachi, T. Oikawa, S. Shinohara, H. Toyama, K. Yamagishi, K. Miyamoto
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 297-300
Reversed Field Pinch Studies | doi.org/10.13182/FST95-A11947091
Articles are hosted by Taylor and Francis Online.
Statistical property of ion and electron temperatures on various plasma parameters has been investigated in REPUTE-1 reversed field pinch (RFP) plasmas. The scalings laws are expressed in terms of the plasma current, loop voltage and line averaged density. Dependence on other parameters seems to be weak. The operational range of density is wide in REPUTE-1, and it is limited by Hugill number H*~1, which is another expression of Ip/N, where Ip is the plasma current and N is the area density. Obtained scaling laws areTi∝VLoop1.3×nˉe−0.3,Te∝Ip0.8×nˉe−0.2, where ne is the line averaged electron density and VLoop is the loop voltage. The electron temperature has roughly same dependence as other RFP devices. The Ip dependence of ion temperature is not found in REPUTE-1, while some RFP devices demonstrate linear dependence.