ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
M. Iwase, S. Kubo, R. Kumazawa, H. Idei, K. Ohkubo, T. Mutoh, T. Watari, K. Nishimura, S. Okamura, K. Matsuoka, T. Minami, I. Yamada, K. Narihara, K. Ida, H. Iguchi
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 248-251
Helical Systems | doi.org/10.13182/FST95-A11947080
Articles are hosted by Taylor and Francis Online.
The electron power deposition profile has been estimated experimentally during the ion cyclotron range of frequency (ICRF) heating and the electron cyclotron resonance heating (ECRH) in the compact helical system (CHS). The time evolution of the local electron temperature is measured from the second harmonic electron cyclotron emission (ECE) using super heterodyne radiometer. The absorbed power by electrons has been derived from the change in the slopes of the local electron temperature just before and after the input power is turned off. The power deposition profiles of electrons are compared with results from the calculation code in ICRF experiment. Those results show good agreement. In the ECRH experiment the input power is modulated to reduce the power deposition profile. Those analyses give results that the input power is absorbed around ρ =0.6.