ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
S. Morita, H. Yamada, R. Akiyama, A. Ando, H. Arimoto, K. Ida, H. Idei, H. Iguchi, O. Kaneko, S. Kubo, R. Kumazawa, K. Matsuoka, T. Minami, T. Morisaki, S. Muto, K. Narihara, K. Nishimura, S. Okamura, T. Ozaki, S. Sakakibara, C. Takahashi, K. Tanaka, J. Xu, I. Yamada
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 239-243
Helical Systems | doi.org/10.13182/FST95-A11947078
Articles are hosted by Taylor and Francis Online.
Particle confinement time τp has been obtained from measurements of poloidal and toroidal distributions of Ha and Lyman a emissions in CHS. These particle confinement times range between 1.5 and 4ms at a constant line-averaged density of 3×1013cm–3 for both cases of limiter- and divertor-dominated NBI plasmas with Ti-gettering. In these cases the energy confinement time τE were between 2 and 3ms. The density decay characteristic time τp* and global recycling coefficient R have been also measured for Ti-gettered plasmas and large τp* values were observed. As a result high recycling rates (R>0.92) are obtained for a wide density range. For a limiter-dominated case of boronized plasmas (Rax=92.1cm) values of τp were correlated with τE and a linear correlation between them was found for normalized τE to P-0.58 which is a power degradation term in LHD empirical scaling.