ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
C. H. Skinner, C. A. Gentile, L. Ciebiera, S. Langish
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 11-14
Technical Paper | doi.org/10.13182/FST04-A420
Articles are hosted by Taylor and Francis Online.
Tritiated particles have been observed to spontaneously levitate under the influence of a static electric field. Tritium-containing codeposits were mechanically scraped from tiles that had been used in the Tokamak Fusion Test Reactor (TFTR) inner limiter during the deuterium-tritium campaign and were placed in a glass vial. On rubbing the plastic cap of the vial, a remarkable "fountain" of particles was seen inside the vial. Particles from an unused tile or from a TFTR codeposit that formed during deuterium discharges did not exhibit this phenomenon. It appears that tritiated particles are more mobile than other particles, and this should be considered in assessing tokamak accident scenarios and in occupational safety.