ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
S. Besshou, K. Ogata, K. Kondo, T. Mizuuchi, K. Nagasaki, H. Okada, F. Sano, H. Zushi, T. Obiki
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 219-222
Helical Systems | doi.org/10.13182/FST95-A11947073
Articles are hosted by Taylor and Francis Online.
This paper describes the realization of magnetic detection of the finite β free boundary plasma shin for a toroidal helical plasma. Recent experimental results, the normalized displacement Δb/ap as a function of volume average beta <β>, are discussed. The measured typical plasma boundary shift, Δb/ap, in the standard Heliotron E configuration (Rp=2.20m, ap=0.21m, Ԏ/2ᴨ(0)~0.53, Ԏ/2ᴨ(ap)~2.8) is (5–12)x10–3, when the volume averaged beta is 0.50%. The measured normalized plasma boundary shift is nearly proportional to the diamagnetic volume-averaged beta, for values of beta up to 0.95%. The magnetically determined plasma boundary shift Δb is less than 3 mm. The measured shift is in the range in-between the expected upper limit (Δb/ap = β(0)/2βeq) and the lower limit (Δb/ap = <β>/2βeq), where βeq = (Ԏ/2ᴨ(ap))2(ap/Rp)~0.77 for the standard configuration of Heliotron E.
We find that the measured free boundary plasma shift strongly depends on the initial vacuum magnetic configuration parameters such as the horizontal position of magnetic axis and the rotational transform. When the vacuum magnetic axis is shifted inward toward the major axis, we observed a significant decrease of the normalized plasma shift (Δb/ap) and the plasma induced vertical field, which we interpret as being due to a reduction of Pfirsch-Schlüter current.