ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
S. Besshou, K. Ogata, K. Kondo, T. Mizuuchi, K. Nagasaki, H. Okada, F. Sano, H. Zushi, T. Obiki
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 219-222
Helical Systems | doi.org/10.13182/FST95-A11947073
Articles are hosted by Taylor and Francis Online.
This paper describes the realization of magnetic detection of the finite β free boundary plasma shin for a toroidal helical plasma. Recent experimental results, the normalized displacement Δb/ap as a function of volume average beta <β>, are discussed. The measured typical plasma boundary shift, Δb/ap, in the standard Heliotron E configuration (Rp=2.20m, ap=0.21m, Ԏ/2ᴨ(0)~0.53, Ԏ/2ᴨ(ap)~2.8) is (5–12)x10–3, when the volume averaged beta is 0.50%. The measured normalized plasma boundary shift is nearly proportional to the diamagnetic volume-averaged beta, for values of beta up to 0.95%. The magnetically determined plasma boundary shift Δb is less than 3 mm. The measured shift is in the range in-between the expected upper limit (Δb/ap = β(0)/2βeq) and the lower limit (Δb/ap = <β>/2βeq), where βeq = (Ԏ/2ᴨ(ap))2(ap/Rp)~0.77 for the standard configuration of Heliotron E.
We find that the measured free boundary plasma shift strongly depends on the initial vacuum magnetic configuration parameters such as the horizontal position of magnetic axis and the rotational transform. When the vacuum magnetic axis is shifted inward toward the major axis, we observed a significant decrease of the normalized plasma shift (Δb/ap) and the plasma induced vertical field, which we interpret as being due to a reduction of Pfirsch-Schlüter current.