ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P.-H. Rebut
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 3-20
Overview Paper | doi.org/10.13182/FST95-A11947040
Articles are hosted by Taylor and Francis Online.
The Parties, signatory of the ITER Agreement [1] -Euratom and the governments of Japan, the Russian Federation and the United States of America- are implementing fusion programs directed ultimately towards the development of commercial magnetic fusion energy. Depending on each Party's strategy, ITER may be considered, in some cases, the last experimental step before building a commercial fusion reactor producing electricity economically.
From the results reported in the ITER Outline Design [2], it is possible to define a route towards the construction of a fusion power reactor that would produce large amount of power (~1 to 2 GWe in a single unit) at a capital cost of around $5 per watt for the fusion plant.
If some technologies developed for ITER are extrapolable to the reactor, such as the concept of a self-supporting breeding blanket; a low pressure coolant; no manifolding inside the machine; bending free toroidal field coils; and a fully welded vacuum vessel, some issues still remain to be addressed before a fusion reactor can be considered for construction. These issues involve mainly technological issues, coupled with the uncertainties of plasma behavior, and require adapting the present R&D programs, and a coherent fusion development program plan.
The main technological constraints of a fusion reactor results from economics which favors large a large neutron flux at the reactor first wall. This constraint has an impact on the viability, reliability, and life time of the blanket and divertor components which are subject to important mechanical and thermal stresses, and to a large neutron fluence.
Furthermore, the Tokamak topology is complex, and makes the remote assembly and maintenance of the device more difficult than in other available commercial energy sources.
In the following, the parameters of the reactor will be defined by extrapolating from the ITER Outline Design, and the issues of the reactor physics and of the blanket, divertor and magnet systems will be reviewed, with a view towards balancing the constraints resulting from economics, safety and maintenance.