ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Yoichi Sakuma, Toshiki Kabutomori, Haruo Obayashi, Yuichi Wakisaka, Keizo Ohnishi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 91-94
doi.org/10.13182/FST95-A11963811
Articles are hosted by Taylor and Francis Online.
In order to separate and store tritium (T) in the nuclear fusion cycle, we investigated the use of a hydrogen storage alloy which is safer and more easily handled than other materials, especially uranium. The solid solution alloy TiCr0.4V1.2Fe0.4 was chosen for the investigation because it resists pulverization and is easily activated. Using this alloy, we measured the storage volume, the equilibrium pressure and the isotope effect of absorption and desorption reactions in a low (10−2 ~ 102 Pa) hydrogen atmosphere pressure. The alloy had an absorbing volume of H/M = 0.5 by atomic ratio and the equilibrium absorbing pressure was almost the same as uranium's at the same ambient temperature. The equilibrium reaction has no isotope effect, but the reaction velocity between H2 and the alloy was twice that between D2 and the alloy. Even after several hundred repetitions of hydrogen absorption and desorption, still no change in the alloy was observed.