ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, βis based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.β
Yoichi Sakuma, Toshiki Kabutomori, Haruo Obayashi, Yuichi Wakisaka, Keizo Ohnishi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 91-94
doi.org/10.13182/FST95-A11963811
Articles are hosted by Taylor and Francis Online.
In order to separate and store tritium (T) in the nuclear fusion cycle, we investigated the use of a hydrogen storage alloy which is safer and more easily handled than other materials, especially uranium. The solid solution alloy TiCr0.4V1.2Fe0.4 was chosen for the investigation because it resists pulverization and is easily activated. Using this alloy, we measured the storage volume, the equilibrium pressure and the isotope effect of absorption and desorption reactions in a low (10β2 ~ 102 Pa) hydrogen atmosphere pressure. The alloy had an absorbing volume of H/M = 0.5 by atomic ratio and the equilibrium absorbing pressure was almost the same as uranium's at the same ambient temperature. The equilibrium reaction has no isotope effect, but the reaction velocity between H2 and the alloy was twice that between D2 and the alloy. Even after several hundred repetitions of hydrogen absorption and desorption, still no change in the alloy was observed.