ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
G. Modica, R.A.H. Edwards
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 75-78
doi.org/10.13182/FST95-A11963808
Articles are hosted by Taylor and Francis Online.
Tritiated water (Q2O) is produced during fusion fuel purification or air detritiation. Before recovering the tritium by isotope separation, the Q2O needs to be reduced to form Q2 gas. The reduction of tritiated water on iron is an alternative to electrolysis and gas-shift reactors. It allows a simple, compact, configuration with low tritium inventory. The reactor design incorporates a palladium alloy permeator which extracts the Q2.
Tests on a commercial iron-based catalyst showed a high reactivity and no degradation with repeated cycling. The optimum temperature for water reduction was 375–395 C, and for iron regeneration using hydrogen, 470–495 C. The first prototype reactor-permeator decomposed 9.5 g water in 8 hrs using 210 g iron. The time needed for iron regeneration was reduced to 16 hrs by recirculating the hydrogen. A pilot-scale reactor permeator is now under development: it should be capable of reducing 35 kg of water per year, operating at 1 bar. Attention to the choice of structural materials will minimise tritium carryover into the water produced during regeneration.