ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Maritime organizations to consult with the IAEA
The Nuclear Energy Maritime Organization (NEMO) recently announced that it was officially granted nongovernmental organization consultative status with the International Maritime Organization.
Hiroshi Noguchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 56-61
doi.org/10.13182/FST95-A11963805
Articles are hosted by Taylor and Francis Online.
The conversion reaction of tritium gas to tritiated water in dry air has been studied using low–concentration tritium gases which have three different hydrogen isotope compositions. The conversion was directly proportional to a ratio of radioactivity of T2 to that of total tritium. This demonstrates that the T2 decay process is predominant for the conversion reaction at low initial tritium concentrations. First-order rate constants for the reaction in dry air are found to be independent of initial tritium concentration. A model to predict the rate constant of the production of tritiated water from T2 in dry air has been developed. The modeling results show that the T2 decay process is predominant at low concentrations, while O+ and N2+ ions formed through tritium beta-ray induced reactions play important roles at high concentrations.