ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
C. Malara, A. Viola
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 19-24
doi.org/10.13182/FST95-A11963800
Articles are hosted by Taylor and Francis Online.
The problem of tritium recovery from Li17Pb83 blanket of a DEMO fusion reactor is analyzed with the objective of limiting tritium permeation into the cooling water to acceptable levels. To this aim, a mathematical model describing the tritium behaviour in blanket/recovery unit circuit has been formulated. By solving the model equations, tritium permeation rate into the cooling water and trituim inventory in the blanket are evaluated as a function of dimensionless parameters describing the combined effects of overall resistance for tritium transfer from Li17Pb83 alloy to cooling water, circulating rate of the molten alloy in blanket/recovery unit circuit and extraction efficiency of tritium recovery unit. The extraction efficiency is, in turn, evaluated as a function of the operating conditions of recovery unit. The design of tritium recovery unit is then optimized on the basis of the above parametric analysis and the results are herein reported and discussed for a tritium permeation limit of 10 g/day into the cooling water.