ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
David Murdoch
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 1-7
doi.org/10.13182/FST95-A11963797
Articles are hosted by Taylor and Francis Online.
The design concepts and machine operating parameters which are now emerging for ITER demand novel fuel cycle system designs. The requirement that the torus vacuum system and the fuelling system be installed inside the cryostat imposes a range of stringent environmental constraints. The high divertor pressure which is characteristic of the ITER-EDA involves the development of completely new pumping concepts, and the lower specific tritium inventories now targetted will impact the design of systems and components throughout the fuel cycle.
The new design input parameters are reviewed in the paper, and a range of advanced pumping concepts proposed as candidates for the ITER torus vacuum duty are outlined. The R & D programme priorities as outlined by the ITER-JCT and as presently implemented by the EC Home Team are reviewed.
The status of the design for the SEAFP (Safety and Environmental Aspects of Fusion Power) studies is outlined, and the essential differences from ITER are described. The key R & D issues associated with the SEAFP fuel cycle design are listed.