ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Denis E. Beller, Charles R. Martin
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 1051-1055
Antimatter Energy Sources | doi.org/10.13182/FST91-A11946980
Articles are hosted by Taylor and Francis Online.
The deposition of antiprotons in and subsequent fission of uranium or plutonium has been proposed as a method to assist the driver of an inertial confinement fusion (ICF) pellet and as a spark initiator. In past studies with 1-dimensional radiation-hydrodynamics codes others have predicted the behavior of these conceptual pellets, including very large compression ratios and large fusion plus fission energy yields. However, in these highly idealized studies factors that have reduced predicted yields in past ICF experiments were neglected or not discussed. Thus this concept warrants further study to validate its feasibility with higher confidence, and we have begun a three-phase program to do this. We will investigate the theoretical aspects of antiproton-initiated fission/ICF by using more competent 2-d and/or 3-d codes and extensive data libraries that weren't available for the past studies. Next, a technology development project will include the design and construction of systems for accumulating, storing, and transporting antiprotons. Finally, three proof-of-principle implosion experiments will be conducted at the Phillips Laboratory's Shiva Star facility. We discuss the goals, participants, cost and schedule of this program.