ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Denis E. Beller, Charles R. Martin
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 1051-1055
Antimatter Energy Sources | doi.org/10.13182/FST91-A11946980
Articles are hosted by Taylor and Francis Online.
The deposition of antiprotons in and subsequent fission of uranium or plutonium has been proposed as a method to assist the driver of an inertial confinement fusion (ICF) pellet and as a spark initiator. In past studies with 1-dimensional radiation-hydrodynamics codes others have predicted the behavior of these conceptual pellets, including very large compression ratios and large fusion plus fission energy yields. However, in these highly idealized studies factors that have reduced predicted yields in past ICF experiments were neglected or not discussed. Thus this concept warrants further study to validate its feasibility with higher confidence, and we have begun a three-phase program to do this. We will investigate the theoretical aspects of antiproton-initiated fission/ICF by using more competent 2-d and/or 3-d codes and extensive data libraries that weren't available for the past studies. Next, a technology development project will include the design and construction of systems for accumulating, storing, and transporting antiprotons. Finally, three proof-of-principle implosion experiments will be conducted at the Phillips Laboratory's Shiva Star facility. We discuss the goals, participants, cost and schedule of this program.