ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. Nadler, T. Hochberg, Y. Gu, O. Barnouin, G. Miley
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 850-857
Electrostatic Confined Fusion | doi.org/10.13182/FST91-A11946948
Articles are hosted by Taylor and Francis Online.
Inertial-Electrostatic Confinement (IEC) is an alternative approach to fusion power that potentially offers the ability to burn advanced fuels like D-He3 in a non-Maxwellian, high density core. These aneutronic reactions are ideal for direct energy conversion; since the products energetic ions, they also offer high specific impulse for space propulsion.
The results presented here are the first potential well measurements of an IEC-type device via a collimated proton detector. They indicate that a ~15-kV virtual anode, at least one centimeter in radius, has formed in a spherical device with a cathode potential of 30 kV, and a current of 12 mA. Numerical analysis indicates D+ densities on the order of 109 cm-3, and D+2 densities on the order of 1010 cm-3.
Virtual well formation is very important to IEC devices because they are, in effect, 100% transparent electrodes that can create an electrostatic well to confine energetic ions. A brief description of the theory of IEC is given, followed by a greater description of the results.