ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
H. Kislev, M. A. Gundersen, G. H. Miley
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 843-849
Electrostatic Confined Fusion | doi.org/10.13182/FST91-A11946947
Articles are hosted by Taylor and Francis Online.
Inertial Electrostatic Confined (IEC) fusion is a potentially attractive scheme for compact neutron-lean fusion reactors suitable for marine propulsion and deep space travel. Recent studies have indicated that efficient IEC devices require pulsed ion sources. However, existing pulsed ion diode schemes (e.g. Magnetically Insulated Diode (MID)) are not optimized for IEC applications. We propose a novel MID scheme which utilizes a modified Back. Lighted Thyratron (BLT) switch, both as a repetitive switch and a repetitive ion source. The extractable electron beam current from a fully developed BLT discharge was simulated using a simple electron trajectory integrator. The model's results appear to be in good agreement with the measured electrons escape fractions. The electron beam's escape fraction appears to be much higher when using a newly proposed ring-BLT configuration. The detailed results and additional potential applications of the proposed BLT configurations are also included.