ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
H. Kislev, M. A. Gundersen, G. H. Miley
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 843-849
Electrostatic Confined Fusion | doi.org/10.13182/FST91-A11946947
Articles are hosted by Taylor and Francis Online.
Inertial Electrostatic Confined (IEC) fusion is a potentially attractive scheme for compact neutron-lean fusion reactors suitable for marine propulsion and deep space travel. Recent studies have indicated that efficient IEC devices require pulsed ion sources. However, existing pulsed ion diode schemes (e.g. Magnetically Insulated Diode (MID)) are not optimized for IEC applications. We propose a novel MID scheme which utilizes a modified Back. Lighted Thyratron (BLT) switch, both as a repetitive switch and a repetitive ion source. The extractable electron beam current from a fully developed BLT discharge was simulated using a simple electron trajectory integrator. The model's results appear to be in good agreement with the measured electrons escape fractions. The electron beam's escape fraction appears to be much higher when using a newly proposed ring-BLT configuration. The detailed results and additional potential applications of the proposed BLT configurations are also included.