ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
D. A. McArthur, G. N. Hays, P. S. Pickard
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 753-758
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946932
Articles are hosted by Taylor and Francis Online.
The FALCON reactor-pumped laser program is investigating concepts for high power laser systems pumped directly by fission energy from a nuclear reactor. The direct pumping of laser media with fission energy offers the potential system advantages of scaling to very high laser powers with long run times, extremely compact and low-mass energy storage, and relatively simple gain generator design. Reactor pumping has been studied in the ACRR and SPR research reactor facilities at Sandia National Laboratories. Based on these experiments and extensive system analysis, large reactor-pumped laser systems have been evaluated for extraction efficiency, beam quality, and practicality (considering auxiliary power needs, radiation damage to optical components, rejection of waste heat, and expected imperfections in excitation structures). It appears that high-power reactor-pumped lasers can be developed in the near term to provide important capabilities for the exploration and utilization of space.