ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
D. A. McArthur, G. N. Hays, P. S. Pickard
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 753-758
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946932
Articles are hosted by Taylor and Francis Online.
The FALCON reactor-pumped laser program is investigating concepts for high power laser systems pumped directly by fission energy from a nuclear reactor. The direct pumping of laser media with fission energy offers the potential system advantages of scaling to very high laser powers with long run times, extremely compact and low-mass energy storage, and relatively simple gain generator design. Reactor pumping has been studied in the ACRR and SPR research reactor facilities at Sandia National Laboratories. Based on these experiments and extensive system analysis, large reactor-pumped laser systems have been evaluated for extraction efficiency, beam quality, and practicality (considering auxiliary power needs, radiation damage to optical components, rejection of waste heat, and expected imperfections in excitation structures). It appears that high-power reactor-pumped lasers can be developed in the near term to provide important capabilities for the exploration and utilization of space.