ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
O.C. Jones
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 741-746
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946930
Articles are hosted by Taylor and Francis Online.
This paper describes the current state of knowledge of the rotating fluidized bed reactor for space power and propulsion application. The results of typical calculations of the thermofluid behavior are given showing how reactor parametrics affect the power level and size of the reactor. Thermal stress analysis of the blind-end plate of the engine chamber has shown the need for creative design effort to preclude failure. Coupled thermofluid-neutronic stability analysis including the effects of the expanding particulate fuel bed indicate adequate stability margins which are, nevertheless, orders of magnitude less than those for the equivalent fixed bed reactor. The overall design concept appears capable of providing very high power density propulsion with powers in the range of 250-5000 MW or larger. This concept thus appears to be enabling for short-time missions including LEO-to-GEO interorbital transfer, lunar, or interplanetary transport at 1-g.