ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
O.C. Jones
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 741-746
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946930
Articles are hosted by Taylor and Francis Online.
This paper describes the current state of knowledge of the rotating fluidized bed reactor for space power and propulsion application. The results of typical calculations of the thermofluid behavior are given showing how reactor parametrics affect the power level and size of the reactor. Thermal stress analysis of the blind-end plate of the engine chamber has shown the need for creative design effort to preclude failure. Coupled thermofluid-neutronic stability analysis including the effects of the expanding particulate fuel bed indicate adequate stability margins which are, nevertheless, orders of magnitude less than those for the equivalent fixed bed reactor. The overall design concept appears capable of providing very high power density propulsion with powers in the range of 250-5000 MW or larger. This concept thus appears to be enabling for short-time missions including LEO-to-GEO interorbital transfer, lunar, or interplanetary transport at 1-g.