ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
R. J. Lawrence, J. T. Kare, R. M. Zazworsky, D. K. Monroe
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 714-718
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946924
Articles are hosted by Taylor and Francis Online.
The use of ground-based lasers to launch small payloads but large total masses into low-Earth orbit may prove to be the most innovative and potentially economical approach for accomplishing this important mission. Of the several possible schemes for laser propulsion, two are examined: (1) ablative momentum transfer using pulsed lasers; and (2) heat exchanger thrusters in conjunction with CW lasers. For an entry-level payload of ~50 kg it is found that the former yields payload-to-power ratios of < 0.5 kg/MW with a requirement for an average laser power of at least 100 MW, whereas the latter might yield 1 to 3 kg/MW with a laser power of several 10s of MW. One of the promising approaches that could yield a driver for such a system is the reactor-pumped laser FALCON, which scales to these power levels with the potential for long run times.