ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
R. J. Lawrence, J. T. Kare, R. M. Zazworsky, D. K. Monroe
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 714-718
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946924
Articles are hosted by Taylor and Francis Online.
The use of ground-based lasers to launch small payloads but large total masses into low-Earth orbit may prove to be the most innovative and potentially economical approach for accomplishing this important mission. Of the several possible schemes for laser propulsion, two are examined: (1) ablative momentum transfer using pulsed lasers; and (2) heat exchanger thrusters in conjunction with CW lasers. For an entry-level payload of ~50 kg it is found that the former yields payload-to-power ratios of < 0.5 kg/MW with a requirement for an average laser power of at least 100 MW, whereas the latter might yield 1 to 3 kg/MW with a laser power of several 10s of MW. One of the promising approaches that could yield a driver for such a system is the reactor-pumped laser FALCON, which scales to these power levels with the potential for long run times.