ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
M. Todosow, H. Ludewig, H. Takahashi, J. Powell
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 678-682
Accelerator/Reactor Waste Transmutation | doi.org/10.13182/FST91-A11946918
Articles are hosted by Taylor and Francis Online.
An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. Core configurations consisting of 72-85 Pu fuelled “driver,” and ~42 actinide loaded “target” PBR fuel elements in a low temperature D2O, or beryllium carbide moderator/reflector are examined. Direct cooling of the HTGR BISO/TRISO type particles by radial flow of pressurized helium gas through the fuel bed allows high power densities (~5 MW/l), and high flux levels (~1.0E16 n/cm2-sec). As a result, up to ~50 % of the actinides in the target elements are burned in a postulated 20 day cycle.
The PBR based actinide burner concept possesses a number of safety and economic benefits relative to other reactor based transmutation approaches. These include a low inventory of radionuclides (~5% of that in a commercial LWR), and high integrity, coated fuel particles which can withstand extremely high temperatures, while still retaining virtually all fission products. This ensures large thermal margins under normal operating conditions, and minimizes the potential source term in postulated accidents. In addition, the pressure tube design and the possibility of on-line refueling offer further potential safety and economic advantages.