ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
K. A. Williams
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 529-536
Overview/Energy Policy | doi.org/10.13182/FST91-A11946895
Articles are hosted by Taylor and Francis Online.
Most emerging nuclear energy systems are in the early phases of the research, development, design, and deployment life cycle and/or represent pioneer or first-of-a-kind projects; hence, the uncertainties associated with capital and life cycle costs are often considerable. The type of cost estimate prepared for a given system also depends heavily on the system's development/deployment status, and the cost projections prepared prior to the decision to construct a facility or system often do not incorporate all of the relevant uncertainties.
The purpose of this paper is to survey the types of cost estimates typically prepared for selected nuclear systems at various stages of project development and to describe cost-engineering methodologies which may be used to produce more meaningful and realistic estimates. Examples utilizing nuclear technologies evaluated at Oak Ridge are used to illustrate these methods. Among the techniques considered are probabilistic cost-risk analysis, parametric cost models coupled to system/process performance and design models, and cost growth models based on historical experience with pioneer technologies. In addition to the above survey, the author discusses pitfalls and problems associated with early cost projections. A major premise is the fact that the standard “estimator's contingency” usually does not cover the myriad economic risks inherent to emerging energy-related or nuclear systems.