ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Tak Kuen Mau, Erik L. Vold, Robert W. Conn
Fusion Science and Technology | Volume 12 | Number 2 | September 1987 | Pages 181-196
Fusion Reactors | doi.org/10.13182/FST87-A11963779
Articles are hosted by Taylor and Francis Online.
The capability of a power plant to operate at a wide range of output power is essential for initial commissioning and normal maintenance. Critical physics issues related to operating a tokamak fusion reactor at fractions of its rated power are explored, and methods for power control are identified. Analysis is carried out with a steady-state, profile-dependent, zero-dimensional power balance model of the plasma, in which several empirical transport scalings appropriate to tokamaks are used. It is found that reactor operation depends strongly on the confinement model, the plasma beta limit, and the effect of alpha power on transport. Parametric calculations indicate that density, auxiliary heating power, and an effective external confinement control mechanism are the key control elements, and burn control is required in most cases. Transition between power plateaus is facilitated by operating in the hybrid transformer mode. In general, the impact of fractional power operation on full-power reactor designs appears to be small.