ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Dawei Pan, Weixing Huang, Qiang Chen, Sufen Chen, Zhanwen Zhang, Meifang Liu, Bo Li
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 59-67
Technical Note | doi.org/10.1080/15361055.2017.1372678
Articles are hosted by Taylor and Francis Online.
Drying is one of the most important processes to prepare the hollow polystyrene (PS) shells which meet the requirements for the inertial confined fusion experiments. A tracing experiment was taken by white light interferometer to explore the drying process. The results indicate that the inner water drop passed through the PS shells with the state of water stream molecule. During the experiment, three structures were observed by digital microscope: the structure of craze, mixture of craze and cracks, and cracks. With ongoing drying, the decrease in the interfacial energy was regarded as the inducing factor for the formation of craze, while the residual stress inside the PS shells was the primary cause. Once the craze formed, it not only reduced the strength of the PS shells but also served as the stress concentration point. In the function of adequate time and stress, the voids of craze would coalesce resulting in the cracks formation. High-temperature treatment to the PS shells at 75°C for 3 h was taken to eliminate the residual stress so that the integrated PS shells would be produced. In addition, the comparison of surface roughness between all of the drying conditions is discussed.