ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Quanwen Wu, Wenhua Luo, Xiayan Yan, Jingwen Ba, Zhenhua Zheng, Zhiyong Huang, Jinchun Bao, Danling Dai, Daqiao Meng
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 50-58
Technical Note | doi.org/10.1080/15361055.2017.1368335
Articles are hosted by Taylor and Francis Online.
Tritium must be strictly defended in tritium systems because of its permeability and radioactivity. Detritiation devices are required in tritium systems, such as the glove box detritiation system, the vent detritiation system, and the air detritiation system in ITER. The method of catalytic oxidation and adsorption is widely used for air detritiation, and metal gas getter is used in glove box detritiation. Here, a Ce-based oxide-loaded honeycomb catalyst is prepared as a multifunctional detritiation catalyst. The properties of the Ce-based oxide and catalyst are characterized by X-ray diffraction, N2-adsorption/desorption (Brunauer-Emmet-Teller method), and H2 temperature programmed reduction. The catalytic performance is tested under both O2-lean and O2-rich atmospheres. Results indicate that the Pt/Ce0.7Zr0.3O2 honeycomb catalyst fully oxidizes H2 at room temperature with high space velocity (3.2 × 104 h−1) when oxygen is sufficient. When oxygen is deficient, H2 is also fully oxidized by the catalyst at 200°C, with the oxygen supplying from the support. A detritiation test using tritium as reactant is also carried out, and the results verify the feasibility for detritiation application. An improved detritiation reactor is designed and built based on the multifunctional catalyst.