ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Holtec pulls out of New Mexico SNF interim storage project
Holtec International has confirmed it is canceling plans to build a consolidated interim storage facility for spent nuclear fuel in southeastern New Mexico. Named the HI-STORE CISF, the facility would have stored up to 10,000 canisters of commercial SNF on land owned by the Eddy-Lea Energy Alliance (ELEA) near the towns of Carlsbad and Hobbs.
T. E. Gebhart, S. K. Combs, L. R. Baylor
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 25-33
Technical Paper | doi.org/10.1080/15361055.2017.1372683
Articles are hosted by Taylor and Francis Online.
Future large tokamaks, such as ITER, will require a reliable technique for rapid energy dissipation to mitigate harmful effects from disruptions. Two main methods developed for disruption mitigation are massive gas injection and shattered pellet injection (SPI). Argon and neon are favorable materials for both injection methods. When launching pellets with SPI, it has proven difficult to launch intact pellets of pure argon and/or neon owing to their high material strength at cryogenic temperatures. In this work, we compare two methods of launching relatively high-Z pellets. An electrothermal plasma source is an experimental alternative to the fast opening, high-pressure, gas valve. The electrothermal source was used to launch Lexan™ pellets with approximately the same size and mass of comparable mixed gas (D2 and Ne) cryogenic pellets launched by gas guns. We describe comparisons of achieved pellet velocities, energy efficiencies of each system, and the implications of implementing each respective method on an operating tokamak.